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Abstract

In this paper, we investigate a test for the null hypothesis of trend stationarity
with a structural change against a unit root. We derive the limiting distribution of
an Lagrange Multiplier (LM) test statistic and its characteristic function under a
sequence of local alternatives. The local limiting power of the LM test depends on
the persistence of the stationary component of the process, and the more persistent the
process, the less powerful is the test statistic. We also propose a test statistic that does
not depend on the fraction of the pre-break points to the sample size under the null
hypothesis, which we call the PS test. Though it is convenient for the critical point
not to depend on the break point, the PS test is found to be less powerful than the
LM test under the alternative close to the null hypothesis. Finite sample simulations
show that when the break point is known, the LM test tends to be oversized when
the process is rather persistent, while the size distortion of the PS test is not so
pronounced. On the other hand, the empirical sizes of both tests are close to the
nominal one when the break point is estimated by the least-squares method, though
the power decreases compared with the known break point case. ? 2002 Elsevier
Science B.V. All rights reserved.

JEL classi&cation: C11; C22
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1. Introduction

Economists have been concerned to know whether there is persistence of
a unit root in a time series, and testing for a unit root has an important role
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in practical analyses. From many empirical studies following the work of
Nelson and Plosser (1982), it has been concluded that many macroeconomic
time series have a unit root, and more or less persistence was found in such
data.
However, Perron (1989) showed that the Dickey–Fuller (D–F) test cannot

reject the null hypothesis of a unit root under the alternative of trend station-
arity with a structural change. That is, the D–F test does not have nontrivial
power against stationarity with a break. Perron (1989, 1990) and Perron and
Vogelsang (1992b) developed testing procedures against such a process with
a known break point, whereas, with an unknown break point, unit root tests
have been proposed in the works of Banerjee et al. (1992), Perron (1997),
Perron and Vogelsang (1992a), Vogelsang and Perron (1998) and Zivot and
Andrews (1992), among others.
All the above papers consider the null hypothesis of a unit root against the

alternative of trend stationarity with a break, but in this paper, we consider the
testing problem in the reverse direction. That is, we consider the null of trend
stationarity with a break against the alternative of a unit root. Considering
such a hypothesis may be important for researchers who have interest in a
unit root. In view of the mechanism by which classical hypothesis testing is
carried out, acceptance of the null of a unit root does not necessarily imply
the existence of a unit root, but the unit root hypothesis would be supported
more strongly if the null of stationarity is rejected by the test constructed
in the reverse direction. In this sense, we may see that the test for the null
of stationarity complements the unit root test. On the other hand, when the
null of a unit root is rejected, we cannot conclude that the process is trend
stationary, as the unit root tests considered in the above papers may have
power not only against a stationary process with a break but also against
more general alternatives. Then, once the null of a unit root is rejected, the
test for the null of trend stationarity with a break becomes of primary interest.
We propose such a testing procedure with a Lagrange Multiplier (LM) test

statistic for four patterns of the break shift. Tests for stationarity when no
break have been proposed in the literature by, for example, Kwiatkowski et
al. (1992b) (hereafter KPSS) and Leybourne and McCabe (1994). The main
diFerence between these two tests is that the former uses a nonparametric
correction to exclude the nuisance parameter from the limiting distribution,
while the latter restricts the model to the Gnite order ARMA model. Because
we use a nonparametric method to exclude the nuisance parameter, the LM
test in this paper may be seen as an extension of the KPSS test to the trend
break case. We suppose that the fraction of the pre-break points to the sample
size is constant, and, as in the tests for the null of a unit root with a possible
break, the limiting distribution of our test depends on this fraction. We also
propose a test statistic using the same method as Park and Sung (1994) that
does not depend on the fraction under the null hypothesis (we call this the PS
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test). The limiting properties of the tests proposed in this paper are compared
under a sequence of local alternatives, and, as suggested by theory that the
LM test is locally best invariant (LBI) under the assumption of normality,
the limiting power of the LM test is found to dominate that of the PS test
under the alternative close to the null, although this is not always the case
when the local alternatives diverge from the null.
The plan of the paper is as follows. Section 2 sets up the model and the

assumptions. Two test statistics are proposed in Section 3 and their limit-
ing properties are investigated when the break date is known. The unknown
break point case is treated in Section 4. Finite sample properties are inves-
tigated in Section 5 and the tests proposed in the paper are applied to US
macroeconomic data in Section 6. Section 7 concludes the paper.

2. The model and the testing problem

Let us consider the following error-components model:

yt = z′t �+ xt ; xt = �t + ut; �t = �t−1 + 	t ; ut =
∞∑
j=0

�jvt−j;

(1)

where zt denotes a deterministic component that includes a trend break,
{vt ; 	t}′ are jointly independently and identically distributed with E[v2t ]=�2

v¿0
and E[	2t ]=�2

	 ¿ 0, and {ut} and {	t} are independent. We assume that
{vt ; 	t}′ has Gnite 2+�th moment for �¿0. We also assume that

∑∞
j=1 j|�j|¡∞

and � ≡ ∑∞
j=0 �j �=0. We set t=1; : : : ; T and �0 = 0 without loss of generality

as zt includes a constant term as deGned below. We suppose that a structural
change has occurred at time TB (1¡TB¡T ), and that !=TB=T is Gxed. For
the deterministic component, zt , we consider the following four cases:

Case 0: a constant with a break; zt =[1; DUt]
′,

Case 1: a constant with a break and a linear trend; zt =[1; DUt; t=T ]
′,

Case 2: a constant with no break and a linear trend with a break; zt =
[1; t=T; DTt]

′,
Case 3: a constant and a linear trend, both with a break; zt =[1; DUt; t=T;

DTt]
′,

where DUt =1(t¿TB) and DTt =1(t¿TB)×(t − TB)=T with 1(·) denoting an
indicator function. Case 0 corresponds to the model without a linear trend
such as an interest rate and the purchasing power parity as discussed in Perron
(1990) and Perron and Vogelsang (1992a, b), whereas Cases 1–3 apply to
a model with a linear trend such as gross domestic product and many other
macroeconomic variables. Perron (1989) called Case 1 the “crash model” and
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Case 2 the “changing growth model”. Case 3 allows for a “sudden change
in level followed by a diFerent growth path”.
Basically, we will investigate the above “additive outlier model” with a

known break point. That is, we suppose that we know when the structural
change occurred and that a shock aFects the observations only at one time,
but we will later discuss the case of the “innovational outlier model”, in
which the structural change disturbs the variables with lagged eFects. The
unknown break point case is discussed in Section 4.
Model (1) can be expressed as a vectorized model by stacking each vari-

able,

y=Z�+ x; x= �+ u; �=L	;

where, e.g., y=[y1; : : : ; yT ]
′ and L is a lower triangular matrix with lower

elements 1’s,

L=



1 0
...

. . .

1 · · · 1


 :

To test for the null hypothesis of stationarity with a break, we consider
the following testing problem:

H0: �=
�2
	

�2
v
=0 vs: H1: �=

c2

T 2 ; (2)

where c is a constant. Then, under the null hypothesis, �2
	 =0 so that {yt}

is trend stationary with a break. On the other hand, under H1; {xt} contains
a unit root component {�t} so that {yt} becomes a unit root process with a
break. Note that, in our model (1), the order T−2 is required for the possi-
ble local asymptotic analysis under a sequence of local alternatives. This is
because the test statistic can be expressed as a function of the partial sums
of x̃t as shown in (3), that is,

∑j
t=1 x̃t =

∑j
t=1 ũ t +

∑j
t=1 �̃t where ũ t and �̃t

are regression residuals of ut and �t on zt . The Grst term is of order T 1=2

as {ut} is second order stationary whereas the latter is of order T 3=2 if we
consider the Gxed alternative, so that the latter dominates the former and the
test statistic diverges to inGnity. To proceed with the local asymptotic ana-
lysis, both partial sums of ũ t and �̃t have to be of the same order, T 1=2, and
to establish this, we assume that � is of order T−2. Notice that

∑j
t=1 �̃t is

Op(T 1=2) when �= c2=T 2. By considering a sequence of local alternatives, not
just one Gxed alternative, we can derive local limiting power functions and
investigate the properties of the test statistics by drawing such functions.
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3. Testing for stationarity with a known break point

3.1. The LM test

For the testing problem (2), it is well known that when ut = vt , the LM
test statistic is proportional to �̂−2y′MLL′My where M = IT −Z(Z ′Z)−1Z ′ and
�̂2 =T−1y′My. See, for example, Kwiatkowski et al. (1992a) for the deriva-
tion. Note that under the assumption of normality, the LM test is equivalent
to the LBI test as discussed in King and Hillier (1985).
Since the limiting distribution of the above LM test statistic depends on a

nuisance parameter when ut obeys a general process as in (1), we consider
the following statistic:

ST =
1

�̃2T 2
y′MLL′My=

1
�̃2T 2

T∑
j=1

( j∑
t=1

x̃t

)2

; (3)

where

�̃2 =
‘∑

i=−‘

w(i; ‘)
1
T

T−i∑
t=1

x̃t x̃t+i (4)

with x̃t regression residuals of yt on zt ,

x̃t =yt − z′t

(
T∑

t=1

ztz′t

)−1 T∑
t=1

ztyt :

w(i; ‘) is any kernel function that produces a nonnegative estimate of the
long-run variance of {ut} and we assume ‘=op(T 1=2). The second expression
of (3) is convenient for the practical calculation of the test statistic, though
we use mainly the Grst expression for the theoretical explanation.
The following theorem provides the limiting distribution of ST and its char-

acteristic function for each case. For notational convenience, we deGne the
following functional of a standard Brownian motion in generic form,

G(B; c2) =
∫ 1

0
B(r)2 dr − X (B)′&−1X (B)

+ c2
∫ 1

0

(∫ r

0
B(s) ds− Z(r)′&−1X (B)

)2

dr;

where B(·) is a standard Brownian motion and X (B) denotes a functional of
B(·). As the null hypothesis is a special case of the alternative (c=0), we
give the result only under the alternative.
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Theorem 1. Consider the model (1). (i) For Cases 0 and 3; under a sequence
of local alternatives; H1;

ST
d→!2G(B1; c2!2=�2) + (1−!)2G(B2; c2(1−!2)=�2) (5)

and its characteristic function is expressed as

((); c) = [D(i!2)+
√
−!4) 2 + 2ic2!4)=�2)

×D(i!2)−
√
−!4) 2 + 2ic2!4)=�2)]−1=2

×[D(i(1−!)2)+
√
−(1−!)4) 2 + 2ic2(1−!)4)=�2)

×D(i(1−!)2)−
√
−(1−!)4) 2 + 2ic2(1−!)4)=�2)]−1=2;

(6)

where B1(·) and B2(·) are independent Brownian motions; i =
√−1; and

(ia) for Case 0;

X (B)=
∫ 1

0
B(r) dr; Z(r)= r; &=1; D(*)=

sin
√
*√

*
;

(ib) for Case 3;

X (B)=




∫ 1

0
B(r) dr

∫ 1

0
rB(r) dr


 ; Z(r)=

[
r
r2

2

]
; &=

[
1 1

2

1
2

1
3

]
;

D(*)=
12
*2

(2−
√
* sin

√
*− 2 cos

√
*):

(ii) For Cases 1 and 2; under a sequence of local alternatives; H1;

ST
d→G(B; c2=�2) (7)

and its characteristic function is expressed as

((); c)= [D(i)+
√
−) 2 + 2ic2)=�2)D(i)−

√
−) 2 + 2ic2)=�2)]−1=2;

(8)

where B(·) is a standard Brownian motion and
(iia) for Case 1;

X (B)=




∫ 1

0
B(r) dr

∫ 1

!
B(r) dr

∫ 1

0
rB(r) dr



; Z(r)=




r
dtr
r2

2


 ;
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&=




1 1−! 1
2

1−! 1−! 1−!2

2

1
2

1−!2

2
1
3


 ;

D(*)

=− 12

√
*sin

√
*!2 sin

√
*(1−!)2+2(sin

√
*−sin

√
*!2−sin

√
*(1−!)2)

*5=2!(1−!){1−3!(1−!)} ;

(iib) for Case 2;

X (B)=




∫ 1

0
B(r) dr

∫ 1

0
rB(r) dr

∫ 1

!
(r −!)B(r) dr



; Z(r)=




r
r2

2

1(r¿!) (r−!)2

2


 ;

&=




1 1
2

(1−!)2

2

1
2

1
3

(1−!)2(!+2)
6

(1−!)2

2
(1−!)2(!+2)

6
(1−!)3

3


 ;

D(*)=
D1(*) +D2(*) +D3(*)

*7=2!3(1−!)3
;

with

D1(*)= *!(1−!) sin
√
*;

D2(*) = 2{sin
√
*!2 + sin

√
*(1−!)2 − sin

√
*

− *1=2(! cos
√
*!2 + (1−!) cos

√
*(1−!)2)};

D3(*)= *1=2(cos
√
*+ cos

√
*!2 cos

√
*(1−!)2);

where dtr =1(r¿!)×(r −!).

Remark 1. The test statistic ST is consistent in the sense that limT→∞ P(ST¿
x∗) → 1 as c → ∞ where x∗ is a critical point, because G(B; c2) → ∞ as
c → ∞. We can also show that ST diverges to inGnity when we consider the
Gxed alternative, �¿0, so that the LM test statistic ST is consistent in the
usual sense. This can be proved exactly in the same way as KPSS (1992b),
that is, when �¿0 is Gxed, {�t} dominates {ut} and the order of

∑j
t=1 x̃t
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is T 3=2. Then,
∑

j (
∑

t x̃t)
2 in Eq. (3) is of order T 4 while �̃2 is of order

‘T as shown in KPSS (1992b). As a result, the order of the test statistic
(3) becomes T=‘ and then the test statistic is consistent in the usual sense as
‘=op(T 1=2).

Remark 2. From (5) and (7), we can see that the larger value of |�| entails
the lower power. For example, when {ut} obeys an AR(1) process such as
ut = aut−1 + vt , �2 is 1=(1 − a)2, so that the larger the value of a becomes,
or the more persistent the process becomes, the more slowly does the power
function increase as a function of c.

Remark 3. For Cases 0 and 3, the limiting distribution is expressed as the
sum of two independent functionals, G(B1) and G(B2), so that its character-
istic function is expressed as the product of two characteristic functions. This
is because the test statistic ST can be expressed as the sum of two functions,
one being a function depending on the observation before the break and the
other being so after the break. The proof is in the Appendix. As ST for
Cases 1 and 2 cannot be expressed in such a form, its characteristic function
becomes a little complicated. Though the limiting distributions for Cases 0
and 3 can also be expressed as (7), expression (5) may be more useful for
understanding why their characteristic functions have the form as (6).

Remark 4. Under the null hypothesis, c=0 so that ST converges in distri-
bution to

!2

(∫ 1

0
B1(r)2 dr − X (B1)′&−1X (B1)

)

+(1−!)2
(∫ 1

0
B2(r)2 dr − X (B2)′&−1X (B2)

)
; (9)

for the Cases 0 and 3, and∫ 1

0
B(r)2 dr − X (B)′&−1X (B); (10)

for Cases 1 and 2. Their characteristic functions can be expressed more com-
pactly as

((); 0)= [D(2i!2))D(2i(1−!)2))]−1=2; (11)

for Cases 0 and 3, and

((); 0)= [D(2i))]−1=2; (12)

for Cases 1 and 2.
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Table 1
Percent points of the null distribution of the LM test

0.01 0.05 0.1 0.5 0.9 0.95 0.99

a. Case 0
!=0:1 0.02160 0.03123 0.03892 0.09797 0.28299 0.37538 0.60388
!=0:2 0.02049 0.02895 0.03548 0.08302 0.22915 0.30212 0.48265
!=0:3 0.02001 0.02796 0.03396 0.07440 0.18678 0.24247 0.38052
!=0:4 0.01978 0.02749 0.03326 0.07050 0.16007 0.20106 0.30162
!=0:5 0.01971 0.02736 0.03305 0.06939 0.15176 0.18688 0.26842

b. Case 1
!=0:1 0.01544 0.02057 0.02426 0.04680 0.09840 0.12162 0.17821
!=0:2 0.01517 0.02005 0.02350 0.04343 0.08537 0.10376 0.14839
!=0:3 0.01525 0.02019 0.02370 0.04412 0.08579 0.10304 0.14291
!=0:4 0.01541 0.02050 0.02415 0.04623 0.09736 0.12080 0.17842
!=0:5 0.01549 0.02066 0.02439 0.04741 0.10551 0.13378 0.20405

c. Case 2
!=0:1 0.01536 0.02064 0.02448 0.04816 0.10263 0.12716 0.18696
!=0:2 0.01441 0.01907 0.02242 0.04267 0.08879 0.10956 0.16020
!=0:3 0.01394 0.01825 0.02129 0.03907 0.07815 0.09563 0.13829
!=0:4 0.01371 0.01784 0.02073 0.03712 0.07138 0.08643 0.12299
!=0:5 0.01364 0.01772 0.02056 0.03651 0.06909 0.08318 0.11727

d. Case 3
!=0:1 0.01463 0.01962 0.02325 0.04566 0.09724 0.12046 0.17704
!=0:2 0.01331 0.01744 0.02039 0.03826 0.07903 0.09737 0.14208
!=0:3 0.01267 0.01634 0.01889 0.03343 0.06485 0.07889 0.11308
!=0:4 0.01237 0.01582 0.01817 0.03095 0.05570 0.06615 0.09122
!=0:5 0.01228 0.01566 0.01796 0.03022 0.05267 0.06163 0.08216

From the above theorem, we can obtain the distribution function F(x)
in each case by inverting the characteristic function. Since the limiting dis-
tribution is nonnegative, we can calculate the percent points by numerical
integration, using LQevy’s inversion formula,

F(x)=
1
.

∫ ∞

0
Re

[
1− e−i)x

i)
((); c)

]
d): (13)

Especially for the null distribution, we set c=0; that is, we use the charac-
teristic function (11) or (12).
Table 1 reports the percent points for Cases 0–3. Because, as we can see

from the characteristic function, the limiting distribution when !=!0 is the
same as when !=1−!0, that is, it is symmetric around !=0:5, we tabulate
percentiles only for !=0:1; 0:2; 0:3; 0:4 and 0:5. For !¿0:5, we can refer
to the tables corresponding to 1−!.
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Fig. 1. The limiting powers: (a) (Case 0); (b) (Case 1); (c) (Case 2); (d) (Case 3).

As in the case of the null distribution, the location of the break point, !,
also aFects the limiting power properties. The limiting power function can
also be calculated by numerical integration and is given by 1−F(x) as a func-
tion of c. Figs. 1a–d display the power functions for !=0:1; 0:2; 0:3; 0:4
and 0:5 with �=1. For Cases 0, 2 and 3, the power for the smaller ! dom-
inates that for the larger ! (6 0:5) near the null hypothesis. On the other
hand, for Case 1, the power function for !=0:1 is located above that for
!=0:3, but the case of !=0:5 is most powerful among Gve values of !
when c is close to 0. These properties seem to be only for the small values
of c, and as c increases, the above relation does not hold.
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Fig. 1. (continued).

Next, we compare the limiting power functions of four cases for the Gxed
!. Fig. 2 shows them for !=0:3. As in many other tests, such as the D–F
test, the more complicated the deterministic term becomes, the less powerful
is the test statistic. We can see that the power function of Case 0 dominates
the other three cases, and the test in Case 3 is the least powerful. These
diFerences among power functions tend to diminish as the value of ! de-
creases to 0:1, and especially when !=0:1, the power functions of Cases
1–3 are almost the same, though the power of Case 0 still dominates the
others.
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Fig. 2. The limiting powers (!=0:3).

3.2. The test independent of the break point

As we can see from Theorem 1, the limiting distribution of the LM test
statistic depends on the fraction of the pre-break points, and we tabulated
the percent points of the null distribution for several !’s. In this section we
consider the test statistic whose limiting distribution does not depend on the
value of ! under the null hypothesis. As we can construct such a test only
for Cases 0 and 3, that is, for the cases when there is one time break in all
deterministic components included in the model, we consider only Cases 0
and 3 in this section. Fundamentally, our method is the same as that of Park
and Sung (1994).
For Cases 0 and 3, the test statistic ST is decomposed into the sum of

two functions that are asymptotically independent each other, as discussed
in Remark 3. As these functions consist of observations before and after the
break date, respectively, the appropriate normalizing orders for these functions
are not T 2 but T 2

B and (T − T 2
B). To accomplish these orders, we construct

the weighted variable y∗
t following the idea of Park and Sung (1994).

y∗
t =

{
(T=TB)yt: t=1; : : : ; TB;
[T=(T − TB)]yt: t=TB + 1; : : : ; T:

Using this variable, we construct the following statistic, which we call the
PS statistic

Sps
T =

1
�̃2T 2

y∗′MLL′My∗=
1

�̃2T 2

T−1∑
j=1

( j∑
t=1

x̃∗t

)2

;
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where �̃2 is deGned by (4) and x̃∗t are the regression residuals of y∗
t on zt ,

x̃∗t =y∗
t − z′t

(
T∑

t=1

ztz′t

)−1 T∑
t=1

zty∗
t :

The key point is that the test statistic is decomposed into two terms, and
the appropriate order is imposed on each term. Note that the test statistics for
Cases 1 and 2 cannot be decomposed into two terms as in Cases 0 and 3.
(This is why we cannot construct the test statistic whose limiting distribution
is independent of the break point for Cases 1 and 2.)
The following theorem gives the limiting distribution of the PS statistic

and its characteristic function.

Theorem 2. Consider model (1). For Cases 0 and 3; under a sequence of
local alternatives; H1;

Sps
T

d→G(B1; c2!2=�2) +G(B2; c2(1−!)2=�2)

and its characteristic function is expressed as

((); c) = [D(i)+
√
−) 2 + 2ic2!2))D(i)−

√
−) 2 + 2ic2!2))]−1=2

[D(i)+
√
−) 2 + 2ic2(1−!)2))

D(i)−
√
−) 2 + 2ic2(1−!)2))]−1=2; (14)

where G(B1); G(B2) and D(*) are de&ned as in Theorem 1 (ia) and (ib)
for Cases 0 and 3; respectively.

Remark 5. Although the above limiting distribution depends on the value of
! under H1, we have, for c=0,

Sps
T

d→
(∫ 1

0
B1(r)2 dr − X (B1)′&−1X (B1)

)

+

(∫ 1

0
B2(r)2 dr − X (B2)′&−1X (B2)

)

and ((); 0)= [D(2i))]−1, so that the null distribution does not depend on the
break point.

Remark 6. Note that when !=0:5; T=TB =T=(T − TB)=1=2 so that SPS
T =

(1=4)ST . Thus, the PS test is equivalent to the LM test in Gnite samples as
well as in the limit when the break point is located at the center of the
sample.
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Table 2
Percent points of the null distribution of the PS test

0.01 0.05 0.1 0.5 0.9 0.95 0.99

Case 0 0.07883 0.10942 0.13222 0.27757 0.60704 0.74752 1.07366
Case 3 0.04912 0.06265 0.07184 0.12087 0.21067 0.24654 0.32862

As in the case of the LM test, we can calculate the percentiles of the
PS test under H0 by numerical integration using the inversion formula (13).
Table 2 reports each percentage point of the PS test for Cases 0 and 3.
Although the null distribution does not depend on the break point, it de-

pends on ! under a sequence of local alternatives as shown by Theorem 2,
so that the power depends on the location of the break point. Figs. 3a and
b show the limiting power functions of the PS tests for Cases 0 and 3 with
�=1. Again, as the characteristic function is symmetric around !=0:5, we
consider only the cases where !6 0:5. The relations among power functions
are very similar to those of the LM test. That is, the power function corre-
sponding to the smaller value of ! dominates that corresponding to the larger
value of !. However, the diFerences among the values of ! are not as large
as for the LM test for both Cases 0 and 3.
Now we have two test statistics, ST and Sps

T , for Cases 0 and 3. Our
interest now is in the diFerence of the powers of their limiting distributions,
and whether one dominates the other with respect to power. Fig. 4 depicts
the limiting power functions of the LM and PS tests for Cases 0 and 3 when
!=0:3. From the Ggure, we can see that the power of the LM test dominates
that of the PS test for small values of c but that this relation is reversed when
c increases, although the diFerence between their powers is slight. As the LM
test is LBI, the dominance of the LM test local to the null can be seen as a
theoretical result. Note that, as discussed in Remark 6, their power functions
are exactly the same when !=0:5, and so the PS test can be seen as the
LBI test in such a case.

3.3. The innovational outlier model

Until now, we have investigated the additive outlier model in which the
structural change aFects the observation only at one time. Here, we discuss
the innovational outlier model. That is, we consider the case when the shock
is experienced gradually.
Let us consider the following model:

yt = z′1t�1 +  (B)(z′2t�2) + xt ; (15)

where z1t =1 or [1; t=T ]′, z2t =DUt , DTt , or [DUt;DTt]
′ according to Cases

0–3,  (B)=1 +  1B+ · · ·+  mBm is an mth order lag polynomial, and xt is
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Fig. 3. (a) The limiting powers (Case 0: PS), (b) (Case 3: PS).

deGned as in model (1). By introducing the lag polynomial  (B), the shock
of the structural change aFects yt gradually with lags.
Note that model (15) has the same expression as (1) with zt =[z′1t ; z

′
2t ; z

′
2t−1;

: : : ; z′2t−m]
′ and �=[�′

1; �
′
2;  1�

′
2; : : : ;  m�

′
2]

′. Then, the LM test statistic can be
constructed in the same way as (3).
To consider the limiting distribution of the test statistic we investigate x̃t ,

the regression residuals of yt on zt . Note that we can write

 (B)DUt = 20DUt + d(t; TB) R2;

 (B)DTt = �0DUt + �1DTt + d(t; TB) R�;
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Fig. 4. The limiting powers (Cases 0 and 3: !=0:3).

where 20; R2=[21; : : : ; 2m]
′, �0; �1, and R�=[�2; : : : ; �m+1]

′ are implicitly deGned,
and d(t; TB)= [D(TB)t ; : : : ; D(TB)t−m] with D(TB)t =1(t=TB + 1). Some ele-
ments of R2 and R� might be zero. Then, x̃t is equivalent to the regression
residuals of yt on Rzt , where

Rzt =




[1; DUt; d(t; TB)]
′ for Case 0;

[1; t; DUt; d(t; TB)]
′ for Case 1;

[1; t; DUt; DTt; d(t; TB)]
′ for Case 2;

[1; t; DUt; DTt; d(t; TB)]
′ for Case 3:

However, because d(t; TB) is asymptotically negligible, x̃t can be seen as
regression residuals of yt on Rzt =[1; DUt], [1; t=T; DUt], [1; t=T; DUt; DTt], and
[1; t=T; DUt; DTt] for Cases 0, 1, 2 and 3, respectively. Then, for Cases 0, 1
and 3, the limiting distributions of the test statistics in the innovational outlier
model are the same as those in the additive outlier model, whereas, for Case
2, the limiting distribution is the same as in Case 3. Then, if we investigate
the time series with the innovational outlier model, we can refer to Tables
1a, b, c, and d for Cases 0, 1, 2, and 3, respectively.

4. Testing for stationarity with an unknown break point

In this section, we consider the case when the break point is unknown.
In such a case, we have to estimate the break point and construct the test
statistic using the estimated break point.
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The estimation of the break point has been considered in the literature, and
we use the least-squares method found in Bai (1994, 1997) and Nunes et al.
(1995). Let SSR(k) denote the sum of squared residuals from the regression
of yt on zt assuming that a structural change occurred at time k. Then the
least-squares estimator of the break point denoted by T ∗

B is deGned by

T ∗
B =arg min

16k6T
SSR(k):

According to Bai (1994, 1997) and Nunes et al. (1995), the estimated fraction
of the pre-break point observations, deGned by !∗=T ∗

B =T , is consistent when
xt is an I(0) stochastic process. Moreover, Bai (1994, 1997) proved that
T (!∗ − !)=T ∗

B − TB is Op(1). Using this result, we have the following
corollary.

Corollary 1. Assume that {vt ; 	t}′ is normally distributed and construct the
test statistics ST and Sps

T using the estimated break point T ∗
B instead of

TB. Then; under the local alternative H1; both test statistics have the same
limiting distribution as in Theorems 1 and 2.

The assumption of normality is suScient for xt = ut + �t to satisfy the as-
sumption A6b in Bai (1997). Corollary 1 indicates that the limiting properties
investigated in Section 3 hold even if we use the estimated break point.
However, the local asymptotic theory may be seen as rather theoretical,

and we should also consider the Gxed alternative. As discussed in Remark
1, the test statistic is consistent against the Gxed alternative when the break
point is known. This is not obvious when it is estimated because !∗ may not
be consistent under the Gxed alternative. For example, we can show that !∗

does not converge in probability to ! for Case 0 when �¿0 is Gxed, and in
such a case we will use the wrong break date. We are also interested in the
behavior of the test statistic when we pre-specify the break date, by using,
for example, visual inspection of the data, as well as when there really is no
break.
Then let us consider the case when we use the pre-speciGed or estimated

break date T ∗
B , where T ∗

B is Gxed or of order at most T but !∗ does not
necessarily converge in probability to !, and deGne z∗t in the same way as zt
with the break date T ∗

B . Note that {�t} dominates the behavior of yt = z′t �+
�t + ut , as {�t} is an I(1) process under the Gxed alternative, while the other
two terms are Op(1). Then we have

j∑
t=1

x̃=
j∑

t=1

yt −
j∑

t=1

z∗′t

(
T∑

t=1

z∗t z
∗′
t

)−1 T∑
t=1

z∗t yt =Op(T 3=2);
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so that
∑T

j=1(
∑j

t=1 x̃t)2 is Op(T 4) as the known break point case. Similarly,
we can deduce that �̃2 is Op(‘T ). Then, the test statistic has the same order,
Op(T=‘), as the case when T ∗

B =TB. This shows that the LM test statistic is
consistent even when the break point is misspeciGed under the Gxed alterna-
tive, although the local asymptotic theory discussed in the previous section
does not hold in this case. Similarly, consistency of the PS test can also be
shown.
We also note that our analysis is established under the assumption of the

existence of a structural change. Then, in practice, the test for a structural
change may be useful before our test is conducted. See, for example, Andrews
(1993), Andrews and Ploberger (1994), and Vogelsang (1997) for tests of a
structural change.

5. Finite sample properties

In this section, we investigate the Gnite sample behavior of the LM test
statistic ST and the PS test statistic Sps

T for the sample sizes T =100 and 200.
We consider the following data generating process (DGP):

yt = z′t �+ �t + ut; �t = �t−1 + 	t ; ut = aut−1 + vt ; (16)

where 	t∼NID(0; �); vt∼NID(0; 1), {	t} and {vt} are independent, �0 = 0;
u0 = 0, and z′t �=1 + DUt , 1 + DUt + 0:2t; 1 + 0:2t + 0:02(t − TB), and
1 +DUt + 0:2t + 0:02(t − TB) for Cases 0, 1, 2 and 3, respectively. The size
of the test depends on � and ! whereas the power is aFected by � as well as
those parameters. We set a=0, ±0:2; ±0:5 and ±0:8; !=0:2; 0:5 and 0:8,
and �=0:01 and 1. Simulations are conducted with the known break point,
TB, as well as with the estimated break point, T ∗

B , which is estimated by the
least-squares method as explained in Section 4. The number of replications
is 1000 in all experiments, performed by the GAUSS matrix programming
language.
For the construction of �̃2, we use the Bartlett window deGned by w(i; ‘)=

1− i=(‘+1). We also have to choose the lag truncation number ‘, which af-
fects the Gnite sample properties of the test both under the null and under the
alternative. We consider two types of lag truncation number. One depends
only on the sample size T : ‘4= [4(T=100)1=4] and ‘12= [12(T=100)1=4], as
in KPSS (1992b). The other is the data dependent selection rule, which
is a slight modiGcation of the automatic bandwidth parameter proposed in
Andrews (1991). Here we should note that the Andrews’ automatic band-
width parameter, ‘A, cannot be applied to our test statistic. For example, ‘A
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for an AR(1) model is deGned by

‘A =1:1447

{
4â2T

(1 + â)2(1− â)2

}1=3

; (17)

where â is an estimate of the autoregressive parameter. Under the null hy-
pothesis, â converges in probability to a and 4â2=(1+ â)2=(1− â)2 to 4a2=(1+
a)2=(1 − a)2¿0 as |a|¡1. Then, ‘A is of order T 1=3, that satisGes the con-
dition ‘=op(T 1=2). On the other hand, the process has a unit root under the
alternative and then (1 − â) is of order T−1. As a result, the order of ‘A
becomes T . Since the test statistic ST is Op(T=‘) under the Gxed alternative
as discussed in Remark 1 and Section 4, ST is not consistent in the usual
sense if we use the automatic bandwidth parameter. Note that for the same
reason, we cannot use the automatic bandwidth parameter for the KPSS test.
One possibility for making the test statistic consistent is to constrain ‘A

to diverge at a slower rate than T by introducing the upper bound of order
less than T . As a bound, we consider the optimal Gxed bandwidth param-
eter in Andrews (1991), which is deGned in the same way as (17) with â
pre-speciGed, not estimated from the data. Then we use the following data
dependent bandwidth parameter:

‘Ak=min


1:1447

{
4â2T

(1 + â)2(1− â)2

}1=3

; 1:1447
{

k2T
(1 + k)2(1− k)2

}1=3

:

We consider k=0:6; 0:7; 0:8, and 0.9, as many economic time series have
positive autocorrelations. Note that because ‘Ak is Op(T 1=3) both under the
null and under the alternative, �̃2 with ‘Ak is consistent under the null and
ST diverges under the alternative.

Tables 3a and b reports the empirical sizes of the LM and PS tests. Entries
in the upper row for each ! are the empirical sizes when the break point is
known, whereas those in the unknown break point case are tabulated in the
lower row with parentheses. As we used the upper 5% point as the critical
value, the nominal size of the test is 0.05. The results of the simulation are
summarized as follows:

(i) The size of the LM test is much aFected by the persistence of the
stationary component, a, and the lag truncation number, ‘. As a whole,
there is tendency for over-rejection when the value of a goes to 1 and
for under-rejection when a is a negative value.

(ii) The larger the sample size becomes, the closer is the empirical size to
the nominal one.

(iii) The test with ‘4 has a large size distortion when a is 0.8. The test
with ‘12 has a result similar to that with ‘A0:7. As a whole, tests with
‘A0:8 and ‘A0:9 have closer empirical sizes to the nominal one than the
others.
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Table 3
The size of the tests

! a T =100 T =200

‘4 ‘12 ‘A0:6 ‘A0:7 ‘A0:8 ‘A0:9 ‘4 ‘12 ‘A0:6 ‘A0:7 ‘A0:8 ‘A0:9

(a) (Case 0: LM)
0.2 0.8 0.253 0.107 0.147 0.118 0.103 0.099 0.287 0.110 0.138 0.113 0.098 0.098

(0.211) (0.085) (0.112) (0.098) (0.087) (0.087) (0.230) (0.082) (0.104) (0.084) (0.077) (0.077)
0.5 0.098 0.068 0.083 0.083 0.083 0.083 0.091 0.072 0.069 0.069 0.069 0.069

(0.076) (0.059) (0.064) (0.064) (0.064) (0.064) (0.075) (0.058) (0.062) (0.062) (0.062) (0.062)
0.2 0.057 0.055 0.059 0.059 0.059 0.059 0.049 0.055 0.053 0.053 0.053 0.053

(0.046) (0.046) (0.047) (0.047) (0.047) (0.047) (0.048) (0.048) (0.047) (0.047) (0.047) (0.047)
0 0.038 0.046 0.047 0.047 0.047 0.047 0.040 0.050 0.041 0.041 0.041 0.041

(0.034) (0.035) (0.038) (0.038) (0.038) (0.038) (0.042) (0.045) (0.042) (0.042) (0.042) (0.042)
−0:2 0.032 0.036 0.030 0.030 0.030 0.030 0.031 0.040 0.032 0.032 0.032 0.032

(0.030) (0.029) (0.029) (0.029) (0.029) (0.029) (0.031) (0.040) (0.031) (0.031) (0.031) (0.031)
−0:5 0.021 0.027 0.027 0.027 0.027 0.027 0.017 0.030 0.026 0.026 0.026 0.026

(0.019) (0.027) (0.023) (0.023) (0.023) (0.023) (0.017) (0.031) (0.022) (0.022) (0.022) (0.022)
−0:8 0.001 0.022 0.014 0.019 0.023 0.025 0.006 0.016 0.011 0.021 0.020 0.022

(0.014) (0.027) (0.026) (0.027) (0.030) (0.032) (0.005) (0.020) (0.013) (0.020) (0.022) (0.024)

0.5 0.8 0.323 0.064 0.139 0.094 0.066 0.063 0.365 0.075 0.121 0.082 0.053 0.053
(0.193) (0.074) (0.108) (0.088) (0.080) (0.081) (0.244) (0.083) (0.109) (0.086) (0.072) (0.072)

0.5 0.113 0.044 0.082 0.082 0.082 0.082 0.096 0.038 0.057 0.057 0.057 0.057
(0.068) (0.037) (0.054) (0.054) (0.054) (0.054) (0.065) (0.036) (0.045) (0.045) (0.045) (0.045)

0.2 0.054 0.041 0.068 0.068 0.068 0.068 0.045 0.031 0.050 0.050 0.050 0.050
(0.049) (0.036) (0.059) (0.059) (0.059) (0.059) (0.029) (0.026) (0.035) (0.035) (0.035) (0.035)

0 0.038 0.035 0.046 0.046 0.046 0.046 0.034 0.031 0.031 0.031 0.031 0.031
(0.036) (0.029) (0.036) (0.036) (0.036) (0.036) (0.024) (0.020) (0.024) (0.024) (0.024) (0.024)

−0:2 0.029 0.032 0.030 0.030 0.030 0.030 0.022 0.030 0.021 0.021 0.021 0.021
(0.028) (0.026) (0.029) (0.029) (0.029) (0.029) (0.015) (0.017) (0.015) (0.015) (0.015) (0.015)

−0:5 0.018 0.027 0.020 0.020 0.020 0.020 0.015 0.025 0.018 0.018 0.018 0.018
(0.022) (0.024) (0.022) (0.022) (0.022) (0.022) (0.009) (0.014) (0.013) (0.013) (0.013) (0.013)
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83
−0:8 0.003 0.023 0.013 0.023 0.029 0.034 0.001 0.018 0.009 0.016 0.020 0.022

(0.010) (0.020) (0.015) (0.020) (0.024) (0.030) (0.000) (0.007) (0.003) (0.006) (0.009) (0.012)

0.8 0.8 0.291 0.122 0.168 0.137 0.118 0.114 0.266 0.101 0.128 0.107 0.089 0.089
(0.190) (0.071) (0.094) (0.084) (0.081) (0.082) (0.222) (0.076) (0.096) (0.079) (0.072) (0.071)

0.5 0.101 0.056 0.087 0.087 0.087 0.087 0.095 0.054 0.069 0.069 0.069 0.069
(0.074) (0.054) (0.063) (0.063) (0.063) (0.063) (0.076) (0.050) (0.064) (0.064) (0.064) (0.064)

0.2 0.058 0.039 0.057 0.057 0.057 0.057 0.049 0.043 0.051 0.051 0.051 0.051
(0.050) (0.048) (0.052) (0.052) (0.052) (0.052) (0.050) (0.046) (0.052) (0.052) (0.052) (0.052)

0 0.039 0.034 0.037 0.037 0.037 0.037 0.039 0.038 0.039 0.039 0.039 0.039
(0.036) (0.039) (0.034) (0.034) (0.034) (0.034) (0.037) (0.043) (0.040) (0.040) (0.040) (0.040)

−0:2 0.028 0.031 0.026 0.026 0.026 0.026 0.029 0.037 0.027 0.027 0.027 0.027
(0.030) (0.033) (0.030) (0.030) (0.030) (0.030) (0.029) (0.034) (0.027) (0.027) (0.027) (0.027)

−0:5 0.015 0.023 0.018 0.018 0.018 0.018 0.019 0.029 0.020 0.020 0.020 0.020
(0.018) (0.026) (0.022) (0.022) (0.022) (0.022) (0.019) (0.027) (0.023) (0.023) (0.023) (0.023)

−0:8 0.001 0.014 0.005 0.012 0.015 0.018 0.001 0.010 0.010 0.011 0.012 0.013
(0.013) (0.027) (0.018) (0.023) (0.028) (0.029) (0.004) (0.014) (0.012) (0.018) (0.024) (0.024)

(b) (Case 0: PS)
0.2 0.8 0.195 0.037 0.079 0.053 0.045 0.045 0.301 0.081 0.106 0.086 0.066 0.065

(0.178) (0.061) (0.074) (0.061) (0.059) (0.059) (0.227) (0.064) (0.086) (0.071) (0.064) (0.066)
0.5 0.081 0.064 0.068 0.068 0.068 0.068 0.104 0.059 0.067 0.067 0.067 0.067

(0.056) (0.057) (0.051) (0.051) (0.051) (0.051) (0.080) (0.051) (0.063) (0.063) (0.063) (0.063)
0.2 0.051 0.069 0.065 0.065 0.065 0.065 0.054 0.052 0.057 0.057 0.057 0.057

(0.034) (0.063) (0.040) (0.040) (0.040) (0.040) (0.051) (0.048) (0.050) (0.050) (0.050) (0.050)
0 0.044 0.066 0.054 0.054 0.054 0.054 0.041 0.048 0.038 0.038 0.038 0.038

(0.030) (0.060) (0.039) (0.039) (0.039) (0.039) (0.035) (0.048) (0.040) (0.040) (0.040) (0.040)
−0:2 0.034 0.068 0.035 0.035 0.035 0.035 0.028 0.045 0.027 0.027 0.027 0.027

(0.032) (0.064) (0.033) (0.033) (0.033) (0.033) (0.023) (0.043) (0.023) (0.023) (0.023) (0.023)
−0:5 0.020 0.069 0.032 0.032 0.032 0.032 0.016 0.040 0.022 0.022 0.022 0.022

(0.024) (0.065) (0.036) (0.035) (0.035) (0.035) (0.015) (0.035) (0.025) (0.025) (0.025) (0.025)
−0:8 0.005 0.076 0.029 0.053 0.102 0.126 0.001 0.028 0.018 0.034 0.040 0.044

(0.011) (0.072) (0.031) (0.054) (0.091) (0.122) (0.004) (0.024) (0.016) (0.027) (0.030) (0.032)
0.5 0.8 0.323 0.064 0.139 0.094 0.066 0.063 0.365 0.075 0.121 0.082 0.053 0.053
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Table 3. (continued)

! a T =100 T =200

‘4 ‘12 ‘A0:6 ‘A0:7 ‘A0:8 ‘A0:9 ‘4 ‘12 ‘A0:6 ‘A0:7 ‘A0:8 ‘A0:9

(0.186) (0.060) (0.084) (0.070) (0.065) (0.066) (0.270) (0.077) (0.104) (0.084) (0.072) (0.071)
0.5 0.113 0.044 0.082 0.082 0.082 0.082 0.096 0.038 0.057 0.057 0.057 0.057

(0.069) (0.041) (0.053) (0.053) (0.053) (0.053) (0.079) (0.044) (0.051) (0.051) (0.051) (0.051)
0.2 0.054 0.041 0.068 0.068 0.068 0.068 0.045 0.031 0.050 0.050 0.050 0.050

(0.048) (0.038) (0.056) (0.056) (0.056) (0.056) (0.034) (0.028) (0.035) (0.035) (0.035) (0.035)
0 0.038 0.035 0.046 0.046 0.046 0.046 0.034 0.031 0.031 0.031 0.031 0.031

(0.030) (0.036) (0.040) (0.040) (0.040) (0.040) (0.023) (0.020) (0.024) (0.024) (0.024) (0.024)
−0:2 0.029 0.032 0.030 0.030 0.030 0.030 0.022 0.030 0.021 0.021 0.021 0.021

(0.026) (0.029) (0.027) (0.027) (0.027) (0.027) (0.016) (0.018) (0.016) (0.016) (0.016) (0.016)
−0:5 0.018 0.027 0.020 0.020 0.020 0.020 0.015 0.025 0.018 0.018 0.018 0.018

(0.020) (0.023) (0.024) (0.024) (0.024) (0.024) (0.008) (0.014) (0.012) (0.012) (0.012) (0.012)
−0:8 0.003 0.023 0.013 0.023 0.029 0.034 0.001 0.018 0.009 0.016 0.020 0.022

(0.009) (0.018) (0.013) (0.020) (0.029) (0.036) (0.000) (0.007) (0.004) (0.007) (0.010) (0.014)

0.8 0.8 0.257 0.061 0.098 0.064 0.059 0.059 0.296 0.074 0.108 0.080 0.059 0.057
(0.164) (0.061) (0.069) (0.053) (0.050) (0.050) (0.227) (0.061) (0.088) (0.066) (0.055) (0.056)

0.5 0.088 0.064 0.067 0.066 0.066 0.066 0.099 0.047 0.065 0.065 0.065 0.065
(0.060) (0.056) (0.049) (0.049) (0.049) (0.049) (0.081) (0.037) (0.058) (0.058) (0.058) (0.058)

0.2 0.049 0.069 0.052 0.052 0.052 0.052 0.051 0.037 0.056 0.056 0.056 0.056
(0.047) (0.064) (0.050) (0.050) (0.050) (0.050) (0.041) (0.030) (0.047) (0.047) (0.047) (0.047)

0 0.037 0.073 0.041 0.041 0.041 0.041 0.038 0.037 0.046 0.046 0.046 0.046
(0.046) (0.072) (0.039) (0.039) (0.039) (0.039) (0.033) (0.030) (0.039) (0.039) (0.039) (0.039)

−0:2 0.034 0.070 0.036 0.036 0.036 0.036 0.031 0.037 0.027 0.027 0.027 0.027
(0.037) (0.074) (0.033) (0.033) (0.033) (0.033) (0.026) (0.027) (0.024) (0.024) (0.024) (0.024)

−0:5 0.026 0.071 0.042 0.043 0.043 0.043 0.017 0.028 0.024 0.024 0.024 0.024
(0.025) (0.079) (0.039) (0.038) (0.038) (0.038) (0.014) (0.023) (0.017) (0.017) (0.017) (0.017)

−0:8 0.008 0.100 0.046 0.077 0.122 0.150 0.001 0.024 0.018 0.022 0.030 0.033
(0.013) (0.096) (0.045) (0.076) (0.108) (0.144) (0.004) (0.024) (0.014) (0.025) (0.038) (0.040)
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(iv) The PS test seems to have better Gnite sample properties under the null
hypothesis than the LM test.

(v) Tests with an estimated break point have an empirical size closer to the
nominal one than those with a known break point.

The results for Cases 1–3 are similar to Case 0, but the rejection frequencies
for the LM test with a known break point for these cases tend to be larger
than for Case 0 when a=0:8. For example, the empirical sizes with ‘A0:8
when a=0:8 and !=0:2 are 0.103, 0.130, 0.162 and 0.200 for Cases 0, 1,
2 and 3, respectively, when T =100 and 0.098, 0.102, 0.114 and 0.147 for
T =200. We also note that the PS statistics with ‘A0:7, ‘A0:8 and ‘A0:9 for
Case 3 have a large size distortion when a= − 0:8 and !=0:2 or !=0:8.
To save space, we do not tabulate these results but they are available upon
request.
As mentioned above, the test tends to reject too frequently when a is 0.8,

and so we investigated the case when a is closer to 1, such as 0.9. The
empirical sizes with ‘A0:8 when the break point is known and !=0:2 are
0.159, 0.030, 0.197, 0.217, 0.282, 0.037 for Cases 0, 0PS, 1, 2, 3 and 3PS
for T =100 and 0.171, 0.099, 0.176, 0.182, 0.226 and 0.073 when T =200.
There still remains a tendency for over-rejection when T =200. This means
that even when the null of trend stationarity is rejected with a known break
point, we cannot conclude with certainty that the process is I(1).
On the other hand, the empirical sizes when the break point is estimated

are 0.097, 0.045, 0.088, 0.063, 0.156 and 0.120 for T =100 and 0.091, 0.075,
0.070, 0.071, 0.108 and 0.070 for T =200 for the corresponding cases. Then
the tests with the estimated break point have a less severe size distortion than
those with a known break point.
Table 4a and b reports the empirical power of the tests. The results of the

simulation are summarized as follows:

(i) In most cases, power increases when the sample size becomes large.
(ii) The tests with ‘A0:8 and ‘A0:9 tend to be less powerful than the others.
(iii) As a becomes large, the power tends to be lower as indicated in the

previous section.
(iv) It seems that the LM test is more powerful than the PS test.
(v) When the break point is estimated, power decreases considerably in some

cases compared with the known break point case.

The results of the other cases are similar to Case 0 and to save space we
do not report them.
Although it is diScult to conclude from our simulations which selection

rules for the lag truncation number are best, considering both size and power
properties, the test with ‘A0:7 and ‘A0:8 may have better Gnite sample prop-
erties than the others.
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Table 4
The power of the tests (Case 0: LM).

T =100 T =200

� a ‘4 ‘12 ‘A0:6 ‘A0:7 ‘A0:8 ‘A0:9 ‘4 ‘12 ‘A0:6 ‘A0:7 ‘A0:8 ‘A0:9

(a) (Case 0: LM)
0.01 0.8 0.347 0.171 0.221 0.190 0.162 0.157 0.470 0.263 0.302 0.271 0.239 0.231

(0.199) (0.087) (0.111) (0.097) (0.093) (0.094) (0.286) (0.113) (0.138) (0.119) (0.108) (0.108)
0.5 0.294 0.218 0.261 0.258 0.258 0.258 0.566 0.458 0.507 0.506 0.506 0.506

(0.138) (0.097) (0.124) (0.124) (0.124) (0.124) (0.308) (0.180) (0.235) (0.234) (0.234) (0.234)
0.2 0.369 0.295 0.383 0.383 0.383 0.383 0.665 0.572 0.655 0.655 0.655 0.655

(0.197) (0.137) (0.203) (0.203) (0.203) (0.203) (0.444) (0.307) (0.439) (0.439) (0.439) (0.439)
0 0.431 0.342 0.453 0.453 0.453 0.453 0.709 0.605 0.739 0.739 0.739 0.739

(0.239) (0.166) (0.264) (0.264) (0.264) (0.264) (0.511) (0.359) (0.558) (0.558) (0.558) (0.558)
−0:2 0.475 0.378 0.499 0.499 0.499 0.499 0.749 0.632 0.782 0.782 0.782 0.782

(0.287) (0.174) (0.311) (0.311) (0.311) (0.311) (0.565) (0.392) (0.609) (0.609) (0.609) (0.609)
−0:5 0.505 0.412 0.500 0.500 0.500 0.500 0.778 0.662 0.763 0.763 0.763 0.763

(0.320) (0.208) (0.322) (0.322) (0.322) (0.322) (0.616) (0.415) (0.578) (0.578) (0.578) (0.578)
−0:8 0.454 0.426 0.458 0.446 0.439 0.441 0.743 0.657 0.701 0.692 0.681 0.680

(0.261) (0.217) (0.260) (0.254) (0.250) (0.252) (0.552) (0.419) (0.473) (0.450) (0.440) (0.440)

1 0.8 0.753 0.540 0.627 0.568 0.498 0.368 0.915 0.703 0.759 0.714 0.662 0.560
(0.498) (0.236) (0.314) (0.257) (0.209) (0.198) (0.787) (0.446) (0.554) (0.468) (0.374) (0.277)

0.5 0.780 0.572 0.649 0.615 0.532 0.411 0.917 0.709 0.767 0.720 0.664 0.573
(0.522) (0.268) (0.359) (0.304) (0.259) (0.244) (0.821) (0.457) (0.580) (0.483) (0.405) (0.323)

0.2 0.789 0.588 0.657 0.621 0.551 0.454 0.923 0.711 0.765 0.721 0.664 0.577
(0.546) (0.283) (0.381) (0.326) (0.284) (0.275) (0.832) (0.472) (0.585) (0.498) (0.410) (0.342)

0 0.797 0.592 0.661 0.627 0.567 0.481 0.923 0.710 0.767 0.723 0.665 0.584
(0.544) (0.287) (0.385) (0.340) (0.307) (0.300) (0.835) (0.478) (0.590) (0.507) (0.420) (0.361)

−0:2 0.803 0.592 0.669 0.636 0.587 0.516 0.923 0.711 0.768 0.723 0.667 0.596
(0.548) (0.289) (0.398) (0.361) (0.332) (0.326) (0.839) (0.484) (0.591) (0.514) (0.435) (0.393)

−0:5 0.800 0.589 0.686 0.665 0.642 0.613 0.925 0.710 0.772 0.731 0.683 0.639
(0.560) (0.283) (0.458) (0.436) (0.421) (0.420) (0.843) (0.482) (0.604) (0.535) (0.484) (0.464)
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−0:8 0.794 0.587 0.791 0.784 0.779 0.775 0.922 0.711 0.807 0.790 0.777 0.770

(0.548) (0.289) (0.661) (0.658) (0.656) (0.656) (0.845) (0.485) (0.726) (0.708) (0.695) (0.692)

(b) (Case 0: PS)
0.01 0.8 0.275 0.055 0.106 0.069 0.048 0.045 0.452 0.157 0.220 0.171 0.136 0.122

(0.175) (0.049) (0.068) (0.054) (0.049) (0.049) (0.290) (0.080) (0.123) (0.089) (0.072) (0.071)
0.5 0.253 0.096 0.178 0.175 0.174 0.174 0.524 0.344 0.417 0.412 0.412 0.412

(0.108) (0.057) (0.088) (0.088) (0.088) (0.088) (0.288) (0.137) (0.193) (0.192) (0.192) (0.192)
0.2 0.305 0.168 0.312 0.312 0.312 0.312 0.651 0.444 0.634 0.634 0.634 0.634

(0.132) (0.072) (0.150) (0.150) (0.150) (0.150) (0.427) (0.243) (0.416) (0.416) (0.416) (0.416)
0 0.360 0.190 0.399 0.399 0.399 0.399 0.693 0.505 0.732 0.732 0.732 0.732

(0.176) (0.078) (0.214) (0.214) (0.214) (0.214) (0.497) (0.307) (0.537) (0.537) (0.537) (0.537)
−0:2 0.404 0.213 0.432 0.432 0.432 0.432 0.737 0.533 0.777 0.777 0.777 0.777

(0.213) (0.096) (0.251) (0.251) (0.251) (0.251) (0.551) (0.335) (0.602) (0.602) (0.602) (0.602)
−0:5 0.436 0.239 0.438 0.438 0.438 0.438 0.770 0.562 0.738 0.738 0.738 0.738

(0.257) (0.109) (0.261) (0.261) (0.261) (0.261) (0.586) (0.351) (0.543) (0.543) (0.543) (0.543)
−0:8 0.373 0.241 0.343 0.319 0.304 0.303 0.724 0.569 0.651 0.621 0.601 0.600

(0.194) (0.114) (0.160) (0.151) (0.152) (0.158) (0.531) (0.359) (0.439) (0.408) (0.396) (0.395)

1 0.8 0.710 0.297 0.492 0.372 0.147 0.054 0.916 0.619 0.719 0.644 0.523 0.148
(0.483) (0.194) (0.272) (0.221) (0.167) (0.158) (0.791) (0.419) (0.514) (0.443) (0.320) (0.202)

0.5 0.731 0.334 0.530 0.408 0.172 0.061 0.928 0.641 0.727 0.665 0.542 0.163
(0.511) (0.217) (0.318) (0.250) (0.208) (0.200) (0.827) (0.444) (0.542) (0.462) (0.347) (0.242)

0.2 0.740 0.338 0.547 0.425 0.192 0.085 0.934 0.652 0.729 0.667 0.549 0.176
(0.540) (0.225) (0.342) (0.279) (0.238) (0.230) (0.831) (0.450) (0.543) (0.469) (0.359) (0.268)

0 0.748 0.339 0.555 0.438 0.213 0.111 0.937 0.650 0.728 0.669 0.551 0.192
(0.541) (0.229) (0.352) (0.295) (0.256) (0.250) (0.829) (0.445) (0.544) (0.469) (0.372) (0.295)

−0:2 0.749 0.338 0.557 0.450 0.240 0.138 0.935 0.648 0.727 0.670 0.556 0.225
(0.549) (0.235) (0.376) (0.326) (0.303) (0.299) (0.828) (0.452) (0.546) (0.480) (0.388) (0.334)

−0:5 0.752 0.338 0.588 0.503 0.337 0.253 0.936 0.646 0.729 0.672 0.577 0.310
(0.564) (0.235) (0.431) (0.403) (0.391) (0.390) (0.830) (0.450) (0.566) (0.507) (0.450) (0.424)

−0:8 0.751 0.334 0.735 0.708 0.644 0.601 0.935 0.646 0.772 0.743 0.703 0.618
(0.555) (0.237) (0.652) (0.650) (0.649) (0.649) (0.835) (0.454) (0.699) (0.682) (0.671) (0.667)
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6. Empirical results

In this section, we apply the testing procedure developed in the previous
section to the data series of Nelson and Plosser (1982). The Nelson–Plosser
data have been used in various studies. In particular, the existence of a unit
root is one of the most interesting issues, and has been analyzed in Perron
(1997) and Zivot and Andrews (1992), assuming trend stationarity with a
break under the alternative. They considered a structural change correspond-
ing to Case 1, except for common-stock prices and real wages, for which
Case 3 is assumed. Their results are very similar except for real wages; with
the model corresponding to our Case 1, the unit root hypothesis is rejected
for the Gve macroeconomic time series, real GNP, nominal GNP, industrial
production, employment and nominal wages, weakly rejected (at 10% level)
for real per capita GNP, and, with the model corresponding to our Case 3,
the null of a unit root is rejected for common-stock prices.
Before applying our tests proposed in the previous section, we should test

for the presence of a structural change in the Nelson–Plosser data. This is
investigated in Vogelsang (1997), and according to Tables 1 1 and 3 in
Vogelsang (1997), there seems to be a tendency for a structural change
under the null hypothesis except for employment and money stock. We
apply our tests to 12 macroeconomic time series, except for these two
series.
The results are tabulated in Table 5. The break point and its fraction of the

sample size in the third and fourth columns are estimated by the least-squares
method. For comparison, the results of the unit root test in Zivot and An-
drews (1992) are tabulated in the column labeled Z&A and those of t∗�;)(1)
and t∗�; �(2) using t–sig in Perron (1997) are in the column labeled Perron. The
model of Case 1 is used for all the series except for common-stock prices
and real wages, to which the model of Case 3 is applied. As was seen in the
previous section, tests with ‘4 and ‘A0:6 tend to reject the null hypothesis too
often and so we do not calculate the statistics for them. We also calculate the
PS test statistic for common-stock prices and real wages. From the table, we
can see that the unit root and stationarity tests provide consistent results for
eight out of 12 time series; the null of a unit root is supported for velocity and
interest rates whereas there seems to be no unit root in nominal GNP, indus-
trial production, unemployment, nominal wages and common-stock prices.
There is a weak tendency for a unit root for consumer prices. However,
we should be careful in automatically concluding that velocity, interest rates
and consumer prices have a unit root as the LM test for the null of trend

1 Since our interest is whether or not there is a structural change under the null hypothesis,
we use Table 1, not Table 2.



E. Kurozumi / Journal of Econometrics 108 (2002) 63–99 89

Table 5
Test for stationaritya

Series T TB ! Z&A Perron ‘12 ‘A0:7 ‘A0:8 ‘A0:9

Real GNP 62 1929 0.3387 b b 0.0920c 0.0898 0.0937c 0.0937c

Nominal GNP 62 1929 0.3387 b b 0.0766 0.0774 0.0774 0.0774
Real per capita GNP 62 1940 0.5161 c c 0.1588d 0.1572d 0.1595d 0.1595d

Industrial production 111 1929 0.6306 b b 0.0701 0.0716 0.0712 0.0712
Unemployment 81 1929 0.4938 — — 0.0668 0.0631 0.0631 0.0631
GNP deXator 82 1929 0.5000 0.0945 0.0947 0.0957 0.0968
Consumer prices 111 1878 0.1712 0.0992c 0.0995c 0.1009c 0.1285c

Nominal wages 71 1930 0.4366 d b 0.0901 0.0878 0.0901 0.0901
Velocity 102 1950 0.8039 0.1190d 0.1218d 0.1175d 0.1178d

Interest rate 71 1934 0.4930 0.1416d 0.1468d 0.1387d 0.1431d

Common-stock prices 100 1939 0.6900 b b 0:0524 0.0455 0.0455 0.0455
(the PS test) 0.1661 0.1445 0.1445 0.1445
Real wages 71 1940 0.5775 b 0.0610c 0.0428 0.0428 0.0428
(the PS test) 0.2527d 0.1774 0.1774 0.1774

aThe columns labeled by Z&A and Perron are the results of the unit root test in Zivot and
Andrews (1992) and Perron (1997).

bDenotes signiGcance at 1% level.
cDenotes signiGcance at 5% level.
dDenotes signiGcance at 10% level.

stationarity is oversized and a unit root test has low power when the process
is highly persistent. In fact, the Grst order autocorrelations of velocity and
consumer prices after detrending are 0.80 and 0.88, although the interest
rate is not so very persistent; the Grst order autocorrelation is 0.68. Then,
the former two series still show the possibility of trend stationarity with a
break.
For the other series, test results are inconclusive; for real wages, the result

of the trend stationarity test changes, depending on whether or not we use
‘12. For the GNP deXator, we cannot reject both the null of a unit root and
the null of trend stationarity, which may be due to low power of both test
statistics when the roots are close to one. On the other hand, both hypotheses
are rejected for real GNP and real per capita GNP. Several explanations may
be considered. One reason is that, although there are no unit roots in the
processes, the LM test for stationarity rejected the null hypothesis because of
its property of over-rejection when the process is highly persistent. We may
also consider that both the unit root and stationary processes with a break are
not adequate. Further investigation may be required for these series, possibly
trying models other than the simple I(0) or I(1) model.
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7. Conclusion

In this paper, we have developed a testing procedure for the null hypothesis
of stationarity with a break against nonstationarity. We proposed the LM test
and the PS test, which does not depend on the location of the break point, !,
under the null hypothesis. The local limiting power was also investigated and
the tests were shown to be consistent against the alternative of a unit root. The
simulation experiment revealed that the proposed test tends to reject the null
of trend stationarity too often when the process is highly persistent and the
break point is known, while the test with the estimated break point does not
have a large size distortion, but its power decreases. Although several testing
procedures are proposed to test for the null of a unit root against stationarity
with a break, our tests suppose the null of trend stationarity. They do not
compete but complement each other to investigate the persistence of the time
series.
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Appendix

Proof of Theorem 1. The test statistic is a function of the partial sums of x̃t
as seen in (3). Then using the invariance principle and the continuous map-
ping theorem we will be able to derive the limiting distribution. Because the
invariance principle does not assume a particular distribution, we assume nor-
mality of {vt ; 	t}′ in the following. The assumption of normality is convenient
to show the limiting distribution as the sum of two independent functionals
of Brownian motions, as well as to derive their characteristic functions using
the Fredholm approach for Cases 0 and 3.

Firstly, we prove (5) and (7). Because we can easily see that �̃2 p→�2 = �2�2
v

under H1, where
p→ denotes convergence in probability, we can re-deGne

ST =�−2T−2y′MLL′My instead of (3) as far as the limiting distribution is
concerned.
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(i) Let us consider Case 0. Because [1−DUt;DUt] spans the same space as
[1; DUt], we can replace zt =[1; DUt]

′ by zt =[1−DUt;DUt]
′ and then replace

the orthogonal projection matrix M by M∗=diag{Ma;Mb}, where Ma and Mb

are the TB×TB and (T−TB)×(T−TB) orthogonal projection matrices on zat =1
for t=1; : : : ; TB and zbt =1 for t=TB + 1; : : : ; T , respectively. Then we have
the relation My=M∗y. Hereafter, we use the subscripts a and b to denote
that the vector or the matrix is associated with the data before and after a
break, respectively.
The typical jth element of L′M∗y is expressed as

∑T
t=j x̃t , but from the

property of the regression we can see that
∑T

t=TB+1 x̃t =0 so that
∑T

t=j x̃t =∑TB
t=j x̃t for j6TB. Then we have

L′M∗y= L′x̃=




T∑
t=1

x̃t

...
T∑

t=TB

x̃t

T∑
t=TB+1

x̃t

...
x̃T




=




TB∑
t=1

x̃t

...
x̃TB

T∑
t=TB+1

x̃t

...
x̃T




=

[
L′
a 0
0 L′

b

][
x̃a
x̃b

]
=L′

∗M∗y; (A.1)

where La and Lb are the TB×TB and (T−TB)×(T−TB) matrices with the same
structure as L, L∗=diag{La; Lb}, x̃a =[x̃1; : : : ; x̃TB]

′ and x̃b =[x̃TB+1; : : : ; x̃T ]
′.

Next we decompose the stationary component ut as ut = �vt + ṽt−1 − ṽt
where ṽt =

∑∞
j=0 �̃jvt−j with �̃j =

∑∞
k=j+1 �k . Then we can write the stochastic

component of yt as xt = �t + �vt + ṽt−1 − ṽt , of which the last two terms are
asymptotically negligible.
Noting that, in the vectorized form, under H1, x= � + �v + ṽ−1 − ṽ and

�+ �v∼N (0; �2
v(�

2IT + �LL′)), we have, using the relation (A.1),

ST =
1

�2T 2 x
′M∗L∗L′

∗M∗x

=
�2
v

�2T 2 9
′(�2IT + �LL′)1=2M∗L∗L′

∗M∗(�2IT + �LL′)1=29+ op(1)
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d=
�2
v

�2T 2 9
′L′

∗M∗(�2IT + �LL′)M∗L∗9+ op(1)

=
1
T 2 9

′L′
∗M∗L∗9+

c2

�2T 4 9
′L′

∗M∗LL′M∗L∗9+ op(1); (A.2)

where 9=[9′a; 9
′
b]

′=�−1
v (�2IT + �LL′)−1=2(� + �v)∼N (0; IT ) and d= denotes

equality in distribution. The third relation holds because of the normality of
9. From the deGnition we have

L′
∗M∗L∗=

[
L′
aMaLa 0
0 L′

bMbLb

]
: (A.3)

In addition, as M∗L∗9 is the regression residual of L∗9 on the space spanned
by [1−DUt;DUt] in the same discussion as Eq. (A.1), the following equiv-
alence holds:

L′M∗L∗9=L′
[
MaLa9a

MbLb9b

]
=

[
L′
aMaLa9a

L′
bMbLb9b

]
: (A.4)

Using (A.2)–(A.4) the LM test statistic is expressed as

ST
d=
T 2
B

T 2

1
T 2
B
9′a

{
L′
aMaLa +

T 2
B

T 2

c2

�2T 2
B
(L′

aMaLa)2
}
9a

+
(T − TB)2

T 2

1
(T − TB)2

9′b

{
L′
bMbLb +

(T − TB)2

T 2

c2

�2(T − TB)2
(L′

bMbLb)2
}
9b + op(1)

= SaT + SbT + op(1); say: (A.5)

Because 9a and 9b are independent, we can investigate the limiting distribu-
tions of SaT and SbT separately.
We Grst consider the limiting distribution of SaT . Because Ma is the or-

thogonal projection matrix on zat , we have

1
T 2
B
9′aL

′
aMaLa9a

=
1
T 2
B

TB∑
t=1

22at −
(

1

T 3=2
B

TB∑
t=1

2atz′at

)(
1
TB

TB∑
t=1

zatz′at

)−1 (
1

T 3=2
B

TB∑
t=1

zat2at

)
;

(A.6)
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where 2at denotes the tth element of La9a. By the invariance principle,

1√
TB

2a[TBr] =
1√
TB

[TBr]∑
j=1

9j
d→B1(r); (A.7)

where B1(·) is a standard Brownian motion and [p] denotes the largest integer
6p. We can also see that

1

T 3=2
B

TB∑
t=1

zat2at
d→

∫ 1

0
B1(r) dr ≡ X (B1);

1
TB

TB∑
t=1

zatz′at =1 ≡ &: (A.8)

Then, by (A.6)–(A.8), we have

1
T 2
B
9′aL

′
aMaLa9a

d→
∫ 1

0
B1(r)2 dr − X (B1)′&−1X (B1): (A.9)

Next, denoting regression residuals of 2at on zat as 2̃at , we have

1

T 3=2
B

[TBr]∑
t=1

2̃at

=
1

T 3=2
B

[TBr]∑
t=1

2at −
(

1
TB

[TBr]∑
t=1

z′at

)(
1
TB

TB∑
t=1

zatz′at

)−1 (
1

T 3=2
B

TB∑
t=1

zat2at

)

d→
∫ r

0
B1(s) ds− Z(r)′&−1X (B1);

where Z(r)= r. Because the typical tth element of L′
aMaLa9a =L′

a2̃a is
∑TB

j=t

2̃aj =−∑t−1
j=1 2̃aj because

∑TB
j=1 2̃j =0, we have

c2

�2T 4
B
9′a(L

′
aMaLa)29a =

c2

�2T 4
B

TB−1∑
t=1


 t∑

j=1

2̃aj




2

d→ c2

�2

∫ 1

0

(∫ r

0
B1(s) ds− Z(r)′&−1X (B1)

)2

dr:

(A.10)

From (A.9) and (A.10), we obtain

SaT =
T 2
B

T 2

1
T 2
B
9′aL

′
aMaLa9a +

T 4
B

T 4

c2

�2T 4
B
9′a(L

′
aMaLa)29a

d→!2

{∫ 1

0
B1(r)2 dr − X (B1)′&−1X (B1)
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+
c2!2

�2

∫ 1

0

(∫ r

0
B1(s) ds− Z(r)′&−1X (B1)

)2

dr

}

= !2G(B1; c2!2=�2):

Precisely in the same way as SaT , we obtain SbT
d→(1 − !)2G(B2; c2(1 −

!)2=�2) using (T − TB) instead of TB, where B2(·) is a standard Brownian
motion independent of B1(·), and then (5) is established.

For Case 3, we can replace zt =[1; DUt; t=T; DTt] by zt=[1−DUt; 1(t6TB)×
t=TB; DUt; 1(t¿TB)×(t − TB)=(T − TB)] and then replace the orthogonal
projection matrix M by M∗=diag{Ma;Mb}, where Ma and Mb are the
orthogonal projection matrices on zat =[1; t=TB]

′ for t=1; : : : ; TB and zbt =
[1; (t−TB)=(T −TB)]

′ for t=TB+1; : : : ; T , respectively. Then, analogously to
Case 0, the relation (5) can be established.
(ii) For Cases 1 and 2, we cannot decompose M as diag{Ma;Mb}. But in

the same way as (A.2) we have

ST =
�2
v

�2T 2 9
′(�2IT + �LL′)1=2MLL′M (�2IT + �LL′)1=29+ op(1)

d=
�2
v

�2T 2 9
′L′M (�2IT + �LL′)ML9+ op(1)

=
1
T 2 9

′L′ML9+
c2

�2T 4 9
′(L′ML)29+ op(1): (A.11)

We also have, as (A.9) and (A.10),

1
T 2 9

′L′ML9 d→
∫ 1

0
B(r)2 dr − X (B)′&−1X (B)

and

c2

�2T 4 9
′(L′ML)29 =

c2

�2T 4

T−1∑
t=1


 t∑

j=1

2̃j




2

d→ c2

�2

∫ 1

0

(∫ r

0
B(s) ds− Z(r)′&−1X (B)

)2

dr;

using T−1=2 ∑[Tr]
t=1 9t

d→B(r), where B(·) is a standard Brownian motion and 2̃t
is constructed as 2̃at with the full sample. Then (7) is established.
Next, we derive the characteristic function of the limiting distribution. To

this end, we use the following lemma. See Theorem 5:13 of Tanaka (1996)
for details.
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Lemma A. Suppose that the statistic S∗
T is de&ned by

S∗
T =

1
T
9′BT9+

�
T 2 9

′B2
T 9; (A.12)

where {9}∼i:i:d:(0; 1) and BT satis&es

lim
T→∞

max
j; k

∣∣∣∣BT (j; k)− K
(

j
T
;
k
T

)∣∣∣∣=0; (A.13)

with K(s; t)( �≡ 0) a symmetric; continuous and nearly de&nite function. Then
ST converges in distribution and its limiting characteristic function is given
by

lim
T→∞

E(ei)S
∗
T )= [D(i)+

√
−) 2 + 2i�))D(i)−

√
−) 2 + 2i�))]−1=2;

(A.14)

where D(*) is the Fredholm determinant of K:

To apply the above lemma to ST , we have to check the restriction (A.13)
and whether ST can be expressed as (A.12).

(i) For Cases 0 and 3, !−2SaT has the same expression as (A.12) with
BT =T−1

B L′
aMaLa and �= c2!2=�2. Moreover, after some algebra, we can see

that the (j; k)th element of T−1
B L′

aMaLa is expressed as K(j=TB; k=TB)+O(T−1
B )

for all j and k where

K(s; t) =min(s; t)− st; and

K(s; t) =min(s; t)− 4st + 3st(s+ t)− 3s2t2; (A.15)

for Cases 1 and 3, respectively, so that both K(s; t)’s satisfy condition (30).
Then, by Lemma A, the characteristic function of the limiting distribution of
SaT is given by

lim
T→∞

E[ei)SaT ] = lim
T→∞

[ei(!
2))(!−2SaT )]

= [D(i!2)+
√
−!4) 2 + 2ic2!4)=�2)

D(i!2)−
√
−!4) 2 + 2ic2!4)=�2)]−1=2;

where the Fredholm determinants of (A.15) are given in Theorem 1, as shown
by Theorem 6 of Nabeya and Tanaka (1988) and by Eqs. (5:34) and (9:94)
of Tanaka (1996, pp. 139, 369).
The characteristic function corresponding to SbT is obtained similarly, and

as SaT and SbT are independent, we have expression (6).
(ii) For Case 1, ST in (A.11) has the same expression as (A.12) with

BT =T−1L′ML and �= c2=�2, and we can Gnd the kernel K(s; t) satisfying
condition (A.13). However, in this case, it seems tedious to work out the
Fredholm determinant of K by directly solving the integral equation, and we
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have to Gnd it by another method. Note here that the characteristic function of
the limiting distribution of S∗

T in (A.12) with �=0 is given by [D(2i))]−1=2.
Then, if we derive the characteristic function of the null distribution of ST

corresponding to the case when c=0, we can obtain the Fredholm determi-
nant D(*) by replacing 2i) by *.

To derive the characteristic function under the null hypothesis, we follow
the method used by Perron (1991), and use the expression of the limiting
distribution (7) with c=0. Denote by ;B and ;Y the measures induced by
the processes B(·) and Y (·) which is generated by the following stochastic
diFerential equation:

dY (t)=− bY (t) dt + dB(t); Y (0)=B(0)=0:

Then the measures ;B and ;Y are equivalent and the Radon–Nikodym deriva-
tive d;B=d;Y evaluated at y is given by

d;B=d;Y (y)= exp

[
b
∫ 1

0
y(t) dy(t) + b2=2

∫ 1

0
y(t)2 dt

]
:

(See, for example, Liptser and Shiryayev (1977) and Theorem 4:1 of Tanaka
(1996)). Then we obtain

((); 0) = E

[
exp

{
)
∫ 1

0
B(r)2 dr − )X (B)′&−1X (B)

}]

= E

[
exp

{
)
∫ 1

0
Y (r)2 dr − )X (Y )′&−1X (Y )

+
b
2
(Y (1)2 − 1) +

b2

2

∫ 1

0
Y (t)2 dt

}]

= e−b=2E
[
exp

{
b
2
Y (1)2 − )X (Y )′&−1X (Y )

}]

= e−b=2E
[
exp {F ′AF}]

= (eb|I − 2>A|)−1=2;

where we put b2 = − 2); F =[Y (1); X (Y )′]′; A=diag{b=2;−)&−1}, and >
is the variance–covariance matrix of F . The last equality follows from the
normality of F . Making use of the computerized algebra MAPLE V, we
obtain the characteristic function ((); 0)=D(2i))−1=2 where D(*) is given in
Theorem 1.
The characteristic function for Case 2 can be obtained similarly and we

omit the proof. .
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Proof of Theorem 2. As in Eq. (A.5) of the LM test statistic, we have

Sps
T

d=
1
T 2 9

ps′
a

{
L′
aMaLa +

c2

�2T 2 (L
′
aMaLa)2

}
9ps
a

+
1
T 2 9

ps′

b

{
L′
bMbLb +

c2

�2T 2 (L
′
bMbLb)2

}
9ps
b + op(1)

= Sps
aT + Sps

bT + op(1); say;

where 9ps
a =T=TB9a and 9ps

b =T=(T − TB)9b. Then,

Sps
aT =

1
T 2
B
9′aLaMaLa9a +

c2T 2
B

�2T 2

1
T 4
B
9′a(L

′
aMaLa)29a

d→
∫ 1

0
B1(r)2 dr − X (B1)′&X (B1) +

c2!2

�2∫ 1

0

(∫ r

0
B1(s) ds− Z(r)′&−1X (B1)

)2

dr

= G(B1; c2!2=�2):

Similarly,

Sps
bT

d→
∫ 1

0
B2(r)2 dr − X (B2)′&X (B2) +

c2(1−!)2

�2∫ 1

0

(∫ r

0
B2(s) ds− Z(r)′&−1X (B2)

)2

dr

= G(B2; c2(1−!)2=�2)

and then the limiting distribution of Sps
T can be derived.

The characteristic function of the limiting distribution is obtained analo-
gously to the LM test and we omit the proof.

Proof of Corollary 1. Firstly, note that, under the assumption of normality
and �=�2

	 =�
2
v = c2=T 2; {xt} satisGes the condition A6b in Bai (1997), so that

T (!∗ −!)=T ∗
B − TB is Op(1).

To prove the corollary, it is enough to show that

max
16j6T

∣∣∣∣∣ 1
T 1=2

j∑
t=1

x̃t − 1
T 1=2

j∑
t=1

x̃∗t

∣∣∣∣∣=op(1) and �̃2 − �̃2∗=op(1);

(A.16)
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where x̃∗t and �̃2∗ are deGned in the same way as x̃t and �̃2 with the estimated
break point T ∗

B instead of TB. Note that
j∑

t=1

(x̃t − x̃∗t ) =
j∑

t=1


z∗′t

(
T∑

i=1

z∗i z
∗′
i

)−1 T∑
i=1

z∗i z
′
i � − z′t �




+
j∑

t=1


z∗′t

(
T∑

i=1

z∗i z
∗′
i

)−1 T∑
i=1

z∗i xi

− z′t

(
T∑

i=1

ziz′i

)−1 T∑
i=1

zixi


 ; (A.17)

where z∗t is deGned in the same way as zt with the break date T ∗
B . For

the Grst term, we can easily show that T−1 ∑T
i=1 z∗i z

∗′
i has the same limit as

T−1 ∑T
i=1 z∗i z

′
i because !∗=T ∗

B =T
p→!. In addition, we can see that

∑j
t=1 (z

′
t �−

z∗′t �) is Op(1) for all j. For example, in Case 3, we have∣∣∣∣∣
j∑

t=1

(z′t � − z∗′t �)

∣∣∣∣∣6
T∑

t=1

|(zt − z∗t )
′�|

6 | [0; |TB − T ∗
B |; 0; |TB − T ∗

B | ]�|=Op(1);

because TB − T ∗
B =Op(1). This shows that the Grst term of (A.17) is Op(1)

for all j.
The second term of (A.17) can be decomposed into

j∑
t=1

z′t

(
T∑

i=1

ziz′i

)−1 ( T∑
i=1

z∗i xi −
T∑

i=1

zixi

)

+
j∑

t=1

z′t




(
T∑

i=1

z∗i z
∗′
i

)−1

−
(

T∑
i=1

ziz′i

)−1



T∑
i=1

z∗i xi

+
j∑

t=1

(z∗t − zt)
′
(

T∑
i=1

z∗i z
∗′
i

)−1 T∑
i=1

z∗i xi: (A.18)

Note that
∑T

i=1 z
∗
i xi −

∑T
i=1 zixi is op(T 1=2) while

∑T
i=1 ziz′i and

∑j
t=1 zt are

Op(T ) for all j. Then, the Grst term of (A.18) is op(T 1=2) for all j. Simi-
larly, the second and third terms can also be shown to be op(T 1=2) for all
j. As a result, the second term of (A.17) is op(T 1=2) for all j and then
maxj |T−1=2 ∑j

t=1 (x̃t − x̃∗t ) | =op(1). Thus the Grst relation of (33) is estab-
lished.
In the same way, the second relation of (A.16) can be proved.
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